

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Intelligence (w.e.f. AY: 2021-22)

Part III: Detailed Curriculum

Fourth Semester

Course Name:	Discrete Mathematics			
Course Code:	ES-IT401	Category:	Engineering Science	
	ES-11401		Course	
Semester:	Fourth	Credit:	3	
		Pre-Requisites:	Some concepts from	
L-T-P:	3-0-0		basic math – algebra,	
			geometry, pre-calculus	
Full Marks:	100			
Examination	Semester Examination:	Continuous Assessment:	Attendance:	
Scheme:	70	25	05	

Course	Course Objectives:		
1	To use mathematical logics and Boolean algebra in the field of computer applications.		
2	To know about Set-Relation-Function and Group theory.		
3	To learn counting techniques and number theory.		
4	To use the concept of graph theory in engineering problems.		

Course C	Course Contents:		
Module No.	Description of Topic		
	Sets-Relation-Function:		
	Operations and Laws of Sets		
	Cartesian Products, Binary Relation, Equivalence		
	Relation, Partial Ordering Relation, Lattice		
1	Number Theory	10L	
	Proofs by Mathematical Induction		
	➤ The Division Algorithm, Prime Numbers, The Greatest		
	Common Divisor, Euclidean Algorithm, The		
	Fundamental Theorem of Arithmetic		
	Combinatorics:		
	➤ Basic Counting Techniques, Inclusion and Exclusion		
2	Theorem	6L	
	Permutation and Combination		
	Pigeon-Hole Principle		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	Propositional Logic and Proofs	
3	 Propositional Logic and Proofs: ➤ Basic Connectives and Truth Tables of propositional logics, Disjunctive and Conjunctive Normal Form using truth table, Argument ➤ Quantifiers and their uses ➤ Proofs; Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof by Mathematical Induction ➤ The Laws of Logic, Logical Implication, Rules of 	8L
	Inference	
	Algebraic Structures and Boolean Algebra:	
	❖ Algebraic Structures with one Binary Operator	
	Group, Subgroup, Cyclic group, Permutation group, Symmetric group.	
	Coset, Lagrange's Theorem, Normal Subgroup, Quotient	
	group Homomorphism and Isomorphism of groups	
	 Algebraic Structures with two Binary Operators 	
4	Rigebraic Structures with two binary OperatorsRings, Integral Domain and Fields	10L
	* Boolean Algebra	
	➤ Identities of Boolean Algebra, Duality, Representation of	
	Boolean Function, Disjunctive and Conjunctive Normal	
	Form	
	Switching network from Boolean expression using Logic	
	Gates	
	Karnaugh Map	
	Advanced Graph Theory:	
	Planar and Dual graph: Kuratowski's graphs, Euler's	
	formulae for connected and disconnected planar graphs,	
5	Detection of planarity Croph Coloring: Vertex coloring Chromatic number of	6L
	➤ Graph Coloring: Vertex coloring, Chromatic number of complete graph, circuit and bipartite graph, Chromatic	
	polynomial Connectivity and matching	
TD : 4 : 1	Connectivity and matching	40T
Total		40L

Cour	Course Outcomes:		
After	completion of the course, students will be able to:		
1	Express a logic sentence in terms of predicates, quantifiers, and logical connectives		
2	Derive the solution for a given problem using deductive logic and prove the solution		
	based on logical inference		
3	3 Classify its algebraic structure for a given a mathematical problem,		
4	Evaluate Boolean functions and simplify expressions using the properties of Boolean		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	algebra
5	Develop the given problem as graph networks and solve with techniques of graph
	theory

Lear	ning Resources:
1	Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and
	Optimisation.
2	N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI
3	Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer
	Science, CENGAGE Learning
4	Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH
5	J.K. Sharma, Discrete Mathematics, Macmillan
6	Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics,
	PRSEAON.
7	S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.
8	Douglas B. West, Introduction to graph Theory, PHI
9	C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.
10	R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures,
	World Scientific, 1999.
11	R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-
	Wesley, 1994.
12	N. Deo, Graph Theory, Prentice Hall of India, 1974.
13	S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete
	Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.
14	J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to Computer
	Science, Tata McGraw-Hill, 1997.
15	Higher Algebra- S.K. Mapa
16	N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI
17	S.B. Singh, Discrete Structures – Khanna Publishing House (AICTE Recommended
	Textbook – 2018)
18	S.B. Singh, Combinatorics and Graph Theory, Khanna Publishing House (AICTE
	Recommended Textbook – 2018)

Course Name:	Design and Analysis of Algorithms				
Course Code:	PC-IT402	Category:	Professional Core Courses		
Semester:	Fourth	Credit:	3		
L-T-P:	3-1-0	Pre-Requisites:	Concept of Data Structure &		
			Algorithm		
Full Marks:	100				
Examination	nation Semester Examination: Continuous Attendance: 05		Attendance: 05		
Scheme:	70 Assessment: 25				

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Cours	Course Objectives:		
1	To analyze the asymptotic performance of algorithms.		
2	To be familiar with major algorithms and data structures.		
3	To apply important algorithmic design paradigms and methods of analysis.		
4	To Synthesize efficient algorithms in common engineering design situations.		

Course C	Ontento.	~
Module No.	Description of Topic	Contact Hrs.
1	Introduction: Characteristics of algorithm; Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs; Analysis of recursive algorithms through recurrence relations: Iterative method, Substitution method, Recursion tree method and Masters' theorem.	8L
2	Fundamental Algorithmic Strategies: Divide and Conquer, Greedy, Dynamic Programming, Branch and Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem.	10L
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.	10L
4	Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook6's theorem, Standard NP-complete problems and Reduction techniques.	8L
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4L
Total		40L

Cour	Course Outcomes:		
After	completion of the course, students will be able to:		
1	Analyze given algorithm for worst-case running times based on asymptotic analysis and		
	justify the correctness of algorithms.		
2	Describe the different categories of algorithm and explain when an algorithmic design		
	needs call for an appropriate category, also to synthesize and analyze it in terms of		
	computational complexity		
3	Model a given engineering problem using graph and write the corresponding algorithm		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	to solve the problems.
4	Explain the ways to analyze randomized algorithms (expected running time, probability
	of error).
5	Explain what an approximation algorithm is and to compute the approximation factor
	of an approximation algorithm

Lear	Learning Resources:		
1	"Algorithm Design", 1ST Edition, Jon Kleinberg and Éva Tardos, Pearson.		
2	"Algorithm Design: Foundations, Analysis, and Internet Examples", Second Edition,		
	Michael T Goodrich and Roberto Tamassia, Wiley.		
3	"Algorithms - A Creative Approach", 3RD Edition, Udi Manber, Addison-Wesley,		
	Reading, MA		
4	"Fundamentals Of Computer Algorithms" by Horowitz, Sahani, Universities Press		

Course Name:	Artificial Intelligence			
Course Code:	PC-AIML401	Category: Professional Elective Courses		
Semester:	Fourth	Credit:	Credit: 3	
L-T-P:	3-0-0	Pre-Requisites:	Data Structure, Concept of	
			Probability	
Full Marks:	100			
Examination	xamination Semester Examination:		Attendance: 05	
Scheme:	70	Assessment: 25		

Course	Course Objectives:	
1	To learn the basics concepts of Artificial Intelligent System	
2	To know the special data structure for the domain	
3	To understand reasoning process	
4	To know how the system learns	
5	To have idea about Expert System	

Course Contents:		
Module No.	Description of Topic	Contact Hrs.
1	Introduction: Overview of Artificial intelligence- Problems of AI, AI technique, Water Jug problem.	4L
2	Intelligent Agents: Agents & environment, nature of environment, structure of agents, goal based agents, utility based agents, learning agents	3L

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

3	Search techniques: Solving problems by search, depth first search, depth limited search, bidirectional search, comparing uniform search strategies. Heuristic search strategies: Hill climbing search, Best-first search, A* search, Adversarial search: Games, optimal decisions & strategies in games, the minimax search procedure, alpha-beta pruning, Memory bounded heuristic search: simulated annealing search, local beam search, genetic algorithms; constraint satisfaction problems, local search for constraint satisfaction problems.	8L
4	Using predicate logic : Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction.	6L
5	Probabilistic reasoning : Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logics.	6L
6	Learning : Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning	6L
7	Planning: Role of planning in AI, planning vs problem solving, planning as a logical inference problem, planning vs deduction: Situation Calculus, need of special purpose algorithm, STRIPS language, plan by searching for a satisfactory sequence of actions, representation of plans. Case study: Plan for Shoes and Sock problem	4L
8	Expert System : expert system shells, knowledge acquisition.	3L
Total		40L

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	1 Understand how an intelligent agent works		
2	Learn specific data structure for this field		
3	Understand the application of logic and concept of probability in reasoning		
4	4 Understand the importance of learning		
5	Have idea about Expert System		

Lear	Learning Resources:	
1	"Artificial Intelligence", Ritch & Knight, TMH	
2	"Artificial Intelligence A Modern Approach", Stuart Russel Peter Norvig Pearson	
3	"Introduction to Artificial Intelligence & Expert Systems", Patterson, PHI	
4	"Logic & Prolog Programming", Saroj Kaushik, New Age International	
5	"Expert Systems", Giarranto, VIKAS	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

Course Name:	Machine Learning Foundations		
Course Code:	PC-AIML402	Category:	PE
Semester:	Fourth	Credit:	3
probability and knowl		Basic knowledge of probability and statistics and knowledge of programming	
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	70	Assessment: 25	

Course	Course Objectives:		
1	To learn the concept of how to learn patterns and concepts from data without being		
	explicitly programmed		
2	To design and analyze various machine learning algorithms and techniques		
3	Explore supervised and unsupervised learning paradigms of machine learning		
4	To explore recent trends in various machine learning techniques		

Course Contents:			
Module No.	Description of Topic	Contact Hrs.	
1	 Introduction to Machine Learning: Probability Basics Machine Learning Concepts Application, Issues and tools of Machine Learning 	4L	
2	Concept Learning: Inductive learning hypothesis FIND S algorithm		
3	Bayesian Learning: Naive Bayes Classifier, Optimal Classifier		
4	 Supervised Learning (Regression/Classification): Basic Classification methods: k-Nearest-Neighbors, Decision Trees, Support Vector Machine Regression: Simple and Multiple Regression, Logistic Regression 		
5	 Unsupervised Learning: Clustering Techniques: Partitioning methods (k-Means, k-Medoid). Hierarchical methods(Agglomerative and Decisive Techniques: MIN, MAX, Group Average, Ward's method) and Density based Methods (DBSCAN) Soft clustering Algorithms: Weighted K-means, FCM 	7L	
6	Model Evaluation: • Evaluating Machine Learning algorithms and Model Selection	4L	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	Ensemble Methods (Boosting, Bagging, Random Forests)	
	Artificial Neural Network:	6L
	How ANN Works, Activation functions, Perceptron, McCulloh-	
	Pits model	
7	Architecture of ANN(single layer feed forward, multilayer feed	
	forward, competitive network, recurrent network)	
	Back propagation Algorithm	
	 Concepts of Deep Learning: Basics of CNN and RNN 	
	Reinforcement Learning:	3L
0	Basic Concepts	
8	Model based learning	
	Temporal difference based learning	
Total		40L

Cou	Course Outcomes:		
Afte	After completion of the course, students will be able to:		
1	Understand the methods involved in generating models from data		
2	Understand a wide variety of learning algorithms		
3	Understand how to evaluate models generated from data		
4	Optimize the models learned and report on the expected accuracy that can be achieved		
	when applying the models to solve the problems		
5	Apply the machine learning algorithms to solve various real-world problems		

Lear	ning Resources:
1	Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
2	Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical
	Learning, Springer 2009 (freely available online)
3	Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007
4	Rajiv Chopra, Machine Learning, Khanna Publishing House, 2018
5	Ethem Alpaydin, Introduction to Machine Learning, Second Edition

Course Name:	Biology				
Course Code:	BS-BIO401 Category: Basic Science Course				
Semester:	Fourth	Fourth Credit: 2			
L-T-P:	2-0-0	Pre-Requisites:	Basic knowledge of Physics, Chemistry and Mathematics		
Full Marks:	100				

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	70	Assessment: 25	Attendance, 03

	Course Objectives:		
Ī	1	Bring out the fundamental differences between science and engineering	
Ī	2	Discuss how biological observations of 18th Century that lead to major discoveries	

Course C	ontents:	
Module No.	Description of Topic	Contact Hrs.
1	Introduction to Biology: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.	2L
2	Classification System in Biology: The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E. coli, S. cerevisiae, D. melanogaster, C. elegance, A. thaliana, M. musculus.	2L
3	Genetics: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be given not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Importance of stem cell research.	2L
4	Biomolecules : To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss	4L

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.	
5	Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Discuss at least two examples.	2L
6	Information Transfer: The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	4L
7	Macromolecular analysis: How to analyse biological processes at the reductionist level Proteins-structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	4L
8	Metabolism: ATP as an energy currency. This should include the breakdown of glucose to CO ₂ + H ₂ O (Glycolysis and Krebs cycle) and synthesis of glucose from CO ₂ and H ₂ O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.	2L
9	Microbiology: Concept of microscopic organisms. Concept of species and strains. Identification and classification of microorganisms. Sterilization and media compositions. Growth kinetics. Microscopy: simple, compound, phase-contrast, SEM, TEM, Confocal: principle and applications.	2L
Total		24L

Course Outcomes:			
After	completion of the course, students will be able to:		
1	State different engineering applications from biological perspective.		
2	Classify biological systems and identify different organisms and microorganisms depending on their morphological, biochemical and ecological criterion.		
3	Explain the concept of recessiveness and dominance during the passage of genetic material from parent to offspring and describe DNA as a genetic material in the molecular basis of information transfer.		
4	Discuss structures of different biomolecules starting from basic units and hence understand different biological processes at the reductionistic level.		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

5	Describe protein structures and enzymology and also compare different mechanisms of enzyme action.
6	Describe energy transformation processes in biological systems.

Lear	ning Resources:
1	Biology for Engineers. Arthur T. Johnson. CRC Press.
2	Biology and Engineering of Stem Cell Niches. A K Vishwakarma and Jefferey Karp,
	Elsevier.
3	Environmental Biology for Engineers and Scientists. David A. Vaccari, P. P. Storm and
	J. F Alleman. ELBS
4	Biology for Engineers. G. K. Suraishkumar. Oxford

Course Name:	Design and Analysis of Algorithms Lab					
Course Code:	PC-IT492	Category: Professional Core Courses				
Semester:	Fourth	Credit:	2			
L-T-P:	0-0-4	Pre-Requisites:	Data St	Structure & Algorithm		
Full Marks:	Full Marks: 100					
Examination	Continuous Semester Examination: Continuous		•	Attendance: 05		
Scheme:	60	Assessment:	35	Attendance, 03		

Course	Objectives:
1	To develop skills to design and analyze fundamental algorithms
2	To strengthen the ability to identify and apply the suitable algorithm for the given real world problem
3	To gain knowledge in practical applications and role of computational complexity to determine the efficiency of an algorithm

Module No.	Description of Topic/ Experiment		
	Divide and Conquer Methodology:		
1	 I. Implement Binary Search algorithm using recursive call to a function. II. Find Maximum and Minimum element of an array of integers using recursive call to a function. III. Implement Merge Sort algorithm using recursive call to a function. IV. Implement Quick Sort algorithm using recursive call to a function. 	8P	
2	Dynamic Programming Technique: I. Find the minimum number of scalar multiplications needed for	8P	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

		multiplying chain of matrices.		
	II. Implement Traveling Salesman problem.			
	Gree	dy Methods:		
3	I.	Implement Knapsack Optimization problem.	8P	
	II.	Implement optimization problem of Job Sequencing with	or	
		Deadlines.		
	Grap	h Algorithm :		
	I.	Implement Breadth First Search (BFS) algorithm.		
	II.	Implement Depth First Search (DFS) algorithm.		
	III.	Find the Minimum Cost Spanning Tree of a graph by applying		
		Prim's algorithm.		
4	IV.	Find the Minimum Cost Spanning Tree of a graph by applying		
_		Kruskal's algorithm.	12P	
	V.	Implement Single Source shortest path finding algorithm for a		
		graph proposed by Dijkstra.		
	VI.	Implement Single Source shortest path finding algorithm for a		
		graph proposed by Bellman-Ford.		
	VII.	Implement all pair of shortest path finding algorithm of a graph		
		proposed by Floyed & Warshall.		
5		ch and Bound Technique :	4P	
J	I.	Implement 15-Puzzle problem.	1.1	
		tracking:		
	I.	Implement the problem of placing 8 Queens on a chess board in		
		non-attacking positions.		
6	II.	Implement the problem of Coloring a Graph using minimum	8P	
		number of colors.		
	III.	Implement the algorithm for finding the presence of Hamiltonian		
	cycle in a graph.			
Total			48P	

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	Design and analyze the time and space efficiency of the algorithm.		
2	Identity and analyze the appropriate algorithm for given problem.		
3	Have practical knowledge on the application of efficient algorithm.		

Lear	ning Resources:				
1	1 "Algorithm Design", 1ST Edition, Jon Kleinberg and Éva Tardos, Pearson.				
2	2 "Algorithm Design: Foundations, Analysis, and Internet Examples", Second Editio				

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	Michael T Goodrich and Roberto Tamassia, Wiley.		
3	"Algorithms A Creative Approach", 3RD Edition, UdiManber, Addison-Wesley, Reading, MA		
4 "Fundamentals Of Computer Algorithms", by Horowitz, Sahani, Universities Press			

Course Name:	Artificial Intelligence Lab				
Course Code:	PC-AIML491	Category:		ofessional Core Courses	
Semester:	emester: Fourth Credit:		2	2	
L-T-P:	0-0-4	Pre-Requisites :	Structu	Structured Programming	
Full Marks:	Full Marks: 100				
Examination	Semester Examinatio	Examination: Continuous		Attendance: 05	
Scheme:	eme: 60 Assessment: 3		35	Auendance. 05	

Course Objectives:				
1	To develop skills to programming in Artificial Intelligence specific languages			
2	To strengthen the ability to identify and apply the programming knowledge to			
	implement fundamental algorithms of Artificial Intelligence			
3	To gain knowledge in some famous practically operating Artificial Intelligent System			

Module No.	Description of Lonic			
1	(i) Installation of gnu-prologue, Study of Prologue (gnu-prologue), its facts, and rules.(ii) Write simple facts for the statements and querying it.	12P		
2	 (i) Write a program for Family-tree. (ii) Write Program for Monkey-banana Problem. (iii)Write a program which behaves a small expert for medical Diagnosis. (iv)Write programs for computation of recursive functions like factorial Fibonacci numbers, etc. (v) Write program to solve 4-queens problem. (vi)Write a Program for water jug problem. (vii) Write a program for travelling salesman program. 	28P		
3	Case study of standard AI programs like MYCIN and AI Shell	8P		
Total		48P		
Course Outcomes: After completion of the course, students will be able to:				
	te progammes in Prologue (LISP / PYTHON can be used)			

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

2	Learn how the well-known algorithms of AI can be implemented in programmes
3	Get idea how some famous artificial intelligent system works

	Learning Resources:		
Ī	1	"Logic & Prolog Programming", Saroj Kaushik, New Age International	
Ī	2	"GNU Emacs LISP Reference Manual", Bill Lewis	
Ī	3 "Introduction to Machine Learning with Python", Andreas C. Muller		

Course Name:	Advanced Computing Lab			
Course Code:	PC-AIML492	Category:	PC	
Semester:	Fourth	Credit:	1.5	
L-T-P:	0-0-3	Pre-Requisites:	Basic knowledge of probability and statistics and knowledge of python programming	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	60	Assessment: 35		

Course	Course Objectives:		
1	To design and analyse various machine learning algorithms and techniques		
2	Make students learn to use supervised and unsupervised learning paradigms of machine learning		

Course Contents:				
Module No.	Description of Topic			
1	Lab 1: Programs using Data set, Mean, Median, Mode, Standard Deviation Lab 2: Program using Percentile, Data Distribution, Scatter Plot,	6P		
2	Scale, Train/Test, Decision Tree Lab 3: Implementation of logical rules in Python Lab 4: Using appropriate data apply the concept of Linear Regression Lab 5: Using appropriate data apply the concept of Logistic Regression	9P		
3	Lab 6: Using appropriate data apply the concept of Gradient decent	3P		
4	Lab 7: To add the missing value in any data set Lab 8: Perform & plot under in fitting & over fitting in a data set	6P		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

5	Lab 9: Implementation of clustering algorithms. Lab 10: Implementation of classification algorithms.	6P
Total		30P

Course Outcomes:		
After completion of the course, students will be able to:		
1	Understand the methods involved in generating models from data	
2	Understand a wide variety of learning algorithms	
3	Apply the machine learning algorithms to solve various real-world problems	

Learning Resources:	
1	Machine Learning using Python, Manaranjan Pradhan, U Dinesh Kumar, Wiley
2	Introduction to Machine Learning with Python: A Guide for Data Scientists (Grey scale
	Indian Edition)

Course Name:	Environmental Sciences		
Course Code:	MC471	Category:	Basic Science Courses
Semester:	Fourth	Credit:	0
L-T-P:	2-0-0	Pre-Requisites:	Basic concepts of Environmental Science
Full Marks:	100		
Examination Scheme:	Semester Examination: 100		

Course	e Objectives:
1	Purpose: We as human being are not an entity separate from the environment around us rather we are a constituent seamlessly integrated and co-exist with the environment around us. We are not an entity so separate from the environment that we can think of mastering and controlling it rather we must understand that each and every action of ours reflects on the environment and vice versa. Ancient wisdom drawn from Vedas about environment and its sustenance reflects these ethos. There is a direct application of this wisdom even in modern times.
2	Idea of an activity based course on environment protection is to sensitize the students
	on the above issues through following two types of activities.

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

Course Contents:		
Module No.	Description of Topic	Contact Hrs.
1	(a) Awareness Activities: i) Small group meetings about any of the topic. ii) Slogan making event iii) Poster making event iv) Seminar on any of the topic. v) Preparation of a report on any of the topic regarding current scenario.	4L 2L 5L 4L 4L
2	(b) Actual Activities: i) Plantation ii) Gifting a tree to see its full growth iii) Cleanliness drive iv) Drive for segregation of waste v) Shutting down the fans and ACs of the campus for an hour or so	5L
Total		24L

Cour	Course Outcomes:	
After	completion of the course, students will be able to:	
1	Explain basic concepts, man, society & environment, their interrelationship, mathematics of population growth and associated problems, steady state conservation system.	
2	Demonstrate natural environmental hazards like flood, earthquake, landslide-causes, effects and control/management.	
3	Classify air pollution, water pollution, land pollution, noise pollution and their controls.	
4	Study Elements of ecology and environmental management.	

Learning Resources:	
1	M.P. Poonia & S.C. Sharma, Environmental Studies, Khanna Publishing House, New
	Delhi, 2019
2	Environmental science by Gillbert G. Master