

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)

Part III: Detailed Curriculum

Third Semester

Course Name:	Analog and Digital Electronics		
Course Code:	ES-EC 303	Category:	Engineering Science Course
Semester:	Third	d Credit: 3	
L-T-P:	3-0-0	Pre-Requisites: Basic Knowledge of Electronics	
Full Marks:	100		
Examination	Semester Examination:	on: Continuous Assessment: Attendance:	
Scheme:	70	25	05

Cours	Course Objectives:	
1	1 To know simple Electronics Circuits and applications.	
2	To know Boolean Algebra, K map, SOP & POS.	
3	To know the uses of Combinational & Sequential Circuits.	
4	To know the design of Counter.	

Course C	Course Contents:		
Module No.	Description of Topic		
1	Revision of Basic Electronics: (i) Introduction to Diodes and functionality of BJT & FET. VI Characteristics and Working Principles of Diode & BJT only. (ii) Types of Biasing, Load Line, Q Point and Applications of Transistors. Simple Numerical Problems on Transistor and Biasing.	3L	
2	Amplifiers and Oscillators: (i) Different Classes of Power Amplifiers – (Class-A, B, AB and C – basic concepts, power, efficiency) (ii) Concept of Positive Feedback & Negative Feedback. Advantages of Negative Feedback. Simple Numerical Problems on Feedback. (iii) Basics of Oscillations- Criteria for Oscillation-Working of Crystal Oscillator, Wien Bridge Oscillator, Hartley Oscillator, Colpitt Oscillator. (Without Mathematical Derivations). (iv) Basics of IC 555 Timer only.	10L	

Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22) | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Total	Dissipation.	38L
6	 (i) A/D and D/A Converter- Basics mainly R-2R Ladder, Successive Approximation Type Only. (ii) Logic Families- TTL, CMOS, RTL, ECL – Basic Concepts Only-Propagation Delay Time, Noise Margin, Fan-in, Fan-out, Power 	3L
5	 Sequential Circuits: (i) Difference between Combinational & Sequential Circuits. Concept of Latch. Concept of Clock Pulse & Triggering. (ii) Flip- Flop- JK, D, SR, T, Master Slave, Excitation Table. (iii) Registers- SISO, SIPO, PISO, PIPO. (iv) Concept of Counter- Asynchronous, Synchronous, Design of MOD N Counter, Ring Counter, Up Down Counter. 	8L
4	Combinational Circuits: (i) Adders- Half & Full, Code Converter, Decoder, Encoder, Multiplexer, De Multiplexer, Comparator.	4L
3	 Introduction to Digital Electronics: (i) Concept of Number System, , Basic Logic Gates, Universal Logic Gates, BCD, EBCDIC, ASCII, Gray Code, Boolean Algebra , De Morgan's Theorem, Representation of SOP, POS. (ii) Minimization of Logic Expression- By Boolean Algebra. K –map upto 4 Variables only. 	10L

Cour	Course Outcomes:	
After completion of the course, students will be able to:		
1	Understand basic electronics simple Circuit.	
2	2 Understand the Boolean arithmetic and its application in Digital design.	
3	Understand, analyze and design various combinational and sequential.	

Lear	Learning Resources:	
1	Microelectronics Circuits by A.S. Sedra & K.C. Smith, Oxford University Press.	
2	Digital Fundamentals by Thomas L. Floyd, Pearson Prentice Hall	
3	Electronic Principles by A.P. Malvino, Tata Mcgraw Hill Publications	
4	Electronic Devices & Circuit Theory by Robert L. Boylestad & Louis Nashelsky,	
5	Digital Integrated Electronics by David H. Taub & D. Shilling, Tata Mcgraw Hill	
	Publications.	
6	Solid State Electronic Devices by Ben G. Streetman, PHI Publication.	
7	Fundamentals of Digital Electronics by Anad Kumar, PHI Publication.	
8	The Art of Electronics by Paul Horowitz, Cambridge University Press.	
9	Digital Logic: Applications and Design by John M. Yarbrough, West Publishing	
	Company	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*2 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Name:	Data Structure and Algorithms			
Course Code:	PC-IT301	Category:	Professional Core Courses	
Semester:	Third	Credit:	4	
L-T-P:	3-1-0	Pre-Requisites:	Programming for	
			Problem Solving	
Full Marks:	100			
Examination	Semester Examination: Continuous Attendance: 05		Attendance: 05	
Scheme:	70	Assessment: 25	Assessment: 25	

Course Objectives:	
1	To learn the basics of abstract data types.
2	To learn the principles of linear and nonlinear data structures.
3 To build an application using sorting and searching	

Course Contents:		
Module No.	Description of Topic	Contact Hrs.
1	Introduction: Basic Terminologies: Elementary Data Organizations, Array Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations; Basic Algorithms using array: Searching (linear and binary search) and their complexity analysis.	6L
2	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into linked list, Deletion from linked list; Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.	9L
3	Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each Type of Queues: Algorithms and their analysis. Linked representation of Stack and Queue.	8L
4	Trees and Graph: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary Search Tree, AVL Tree, Threaded Binary Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis. Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.	9L

Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)3 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

5	Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing: Hash Functions, Separate Chaining, Open Addressing, Rehashing, Extendible Hashing, Hash Indices.	8L
Total		40L

Cour	Course Outcomes:	
After	completion of the course, students will be able to:	
1	Understand and apply the concept of stack, queue and linked list operations	
2	Discuss the computational efficiency of the principal algorithms for sorting, searching, and	
	hashing	
3	3 Understand and apply the knowledge of tree and graphs concepts	
4	Choose an appropriate data structure for a particular problem	

Lear	ning Resources:
1	"Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.
2	"Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan
	Anderson- freed.
3	"Data Structures in C" by Aaron M. Tenenbaum.
4	"Data Structures" by S. Lipschutz.
5	"Data Structures Using C" by Reema Thareja.
6	"Data Structures" by R.S. Salaria, Khanna Publishing House
7	"Data Structures through C" by YashwantKanitkar, BPB House
8	"Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.
9	"Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald
	L. Rivest, Clifford Stein

Course Name:	Computer Organization and Architecture			
Course Code:	PC-IT302	Category:	Professional Core	
	FC-11302		Courses	
Semester:	Third	Credit:	3	
L-T-P:	3-0-0	Pre-Requisites:	Concepts of Basic	
	3-0-0		Electronics	
Full Marks:	100			
Examination	Semester Examination:	Continuous Assessment:	Attendance:	
Scheme:	70	25	05	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*4 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Objectives:			
1	Explain the basic sub systems of a computer, their organization, structure and operation.		
2	Illustrate the concept of programs as sequences of machine instructions.		
3	Describe arithmetic and logical operations		
4	Describe memory hierarchy and concept of virtual memory.		
5	Demonstrate different ways of communication with I/O devices and standard I/O		
	interfaces.		
6	Illustrate pipelined processor and other computing systems.		

Course Contents:			
Module No.	Description of Topic		
1	Commonly used number systems. Fixed and floating point representation of numbers. Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format. Instruction sets and addressing modes.	10L	
2	Overflow and underflow, Design of adders - ripple carry and carry lookahead principles, Design of ALU, Fixed point multiplication -Booth's algorithm, Fixed point division - Restoring and non-restoring algorithms. Floating point - IEEE 754 standard.	10L	
3	Memory unit : Basic Concepts, Semiconductor RAM Memories, Read Only Memories, Speed, Size, and Cost, memory hierarchy, CPU-memory interfacing, Cache Memories – Mapping Functions, Replacement Algorithms, Performance Considerations.	10L	
4 Design of control unit - hardwired and micro programmed control. Introduction to instruction pipelining. Introduction to RISC architectures. RISC vs. CISC architectures. I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA.		10L	
Total		40L	

Cour	Course Outcomes:			
After	After completion of the course, students will be able to:			
1	Explain the basic organization of a computer system.			
2	Demonstrate functioning of different sub systems, such as processor, Input/output, and			
	memory.			
3	Illustrate hardwired control and micro programmed control, pipelining, embedded and			
	other computing systems			
4	Design and analyze simple arithmetic and logical units.			

Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)5 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Lear	Learning Resources:		
1	C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw-Hill		
2	W. Stallings, "Computer Organization and Architecture - Designing for Performance",		
	Prentice Hall of India		
3	D. A. Patterson and J. L. Hennessy, "Computer Organization and Design -The		
	Hardware/Software Interface", Morgan Kaufmann		
4	J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill		
5	Mano, M.M., "Computer System Architecture", PHI.		
6	Behrooz Parhami "Computer Architecture", Oxford University Press		
7	Chaudhuri P. Pal, "Computer Organization & Design", PHI,		
8	Computer organization and Architecture – T.K Ghosh		

Course Name:	Linear Algebra		
Course Code:	BS-AIML301	Category:	Basic Science Course
Semester:	Third	Credit:	2
L-T-P:	2-0-0	Pre-Requisites:	Basic Knowledge of matrix and determinant
Full Marks:	100		
Examination Scheme:	Semester Examination: 70	Continuous Assessment: 25	Attendance: 05

C	Course Objectives: This course will enable students to:		
	1	To impart basic concept of vector spaces, basis and dimension.	
	2	To understand inner product and Orthogonalisation technique.	
	3	To learn linear transformation of vector spaces.	
	4	To find eigen values and eigen vectors of a matrix.	

Module No.	Description of Topic	Contact Hrs.
1	 Vector Space: Vectors in the plane, vectors in space, vector Space. Linear combination of vectors, linear span of subset of a vector space. Linear dependence and independence of vectors. Basis and dimension of a vector space. > Subspaces: Definition and examples including lines in ℝ². 	8L

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*6 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

2	 Inner Product Space: ▷ Definition of general inner product on a vector space over ℝ. ▷ Norm of a vector in an inner product space. ▷ Orthogonality of vectors, orthogonal sets and orthonormal sets in an inner product space. Orthogonal and orthonormal bases. ▷ Gram-Schmidt Orthogonalisation process, simple examples in ℝ³. 	8L
3	 Linear Transformation: Definition and properties of linear transformation; examples. Representation of a linear transformation of real vector spaces by matrices. Kernel and image of a linear transformation. 	8L
Total		24L

Course Outcomes:			
After completion of the course, students will be able to:			
1	Apply the concept of Orthogonalisation in inner product spaces for understanding		
	physical problems.		
2	Use the concept of linear transformations to real life problems.		

Learn	Learning Resources:				
1	K. HOFFMAN and R. KUNZE: Linear Algebra, Tata McGraw Hill, New Delhi.				
2	S. KUMARESAN: Linear Algebra A Geometric approach, Prentice Hall of India Private Limited.				
3	GILBERT STRANG: Linear Algebra and its applications, International Student Edition.				
4	A. RAMACHANDRA RAO and P. BHIMA SANKARAN: Linear Algebra, Tata McGraw Hill, New Delhi.				
5	S.K. MAPA: Higher Algebra: Abstract and Linear, Sarat Book House Pvt. Ltd.				

Course Name:	Introduction to Industrial Management			
			Management	
Course Code:	HM-HU301	Category:	Science &	
			Humanities	
Semester:	Third	Credit:	2	
L-T-P:	2-0-0	Pre-Requisites:	Mathematics	
Full Marks:	100			
Examination	xamination Semester Examination: Continuous Assessment:		Attendance: 5	
Scheme:	70	25	Attenuance: 5	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*7 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Ob	ojectives:							
1	Learn the scope and role of Industrial Management. Organization Structure and							
	System concepts of Operations Management							
2	Acquire knowledge of various types of manufacturing system and concept of							
	Production and Productivity. Concept Value analysis and Value engineering.							
3	To develop Critical Path Method (CPM) and Program Evaluation and Review							
	Techniques (PERT). Estimating various kinds of Floats and time crashing.							
4	Understand the scopes and Material Management Material Requirement Planning							
	(MRP) and Enterprise Resource Planning (ERP).							
5	Acquire a thorough knowledge about Production Planning and Control							

Course Contents:					
Module No.	Description of Topic				
1	Introduction: Definitions, Concepts, Historical Development, Objectives, Scope, Functions of Industrial Engineering. Organisational Structure- Delegation of Authority, Centralisation and Decentralisation. Techniques of Industrial Engineering, Role of Industrial Engineer. Production and Operations Management Function – System, Concepts, Objectives and Decisions of Production and Operations Management.	3L			
2	Production and Productivity: Concepts and Definition of Production, Products and Services, Production function, Types of Production, Concepts of Productivity (Financial Efficiency), Difference between Production and Productivity, Factors of Productivity Index, Concept of Cost effectiveness, Factors affecting Value Analysis and Value Engineering, Techniques- FAST and DARSIRI Methods.	5L			
3	CPM and PERT: CPM & PERT-meaning, features, difference, applications. Understand Different terms used in network diagram. Draw network diagram for a real life project containing 10-15 activities, computation of LPO and EPO.(Take minimum three examples). Determination of critical path on network. Floats, its types and determination of floats. Crashing of network, updating and its applications.	6L			
4	Materials Management: Material management-definition, functions and importance; Purchase - objectives, Duties functions and responsibilities. Store keeping- functions, Stores Systems and	6L			

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*8 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal 243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

5	meaning and need for productivity and utilization. Gantt chart, Critical ratio scheduling-method and numeric examples., Sequencing of Operations: "N" jobs and One machine, "N" jobs and Two machines (Johnson's Procedure), "N" jobs and three machines"	
	Production Planning and Control (PPC): Introduction, Objective of PPC, Factors affecting PPC, Functions of PPC –Routing, Loading, Scheduling, Relationship of PPC with other departments, Scheduling-	4L
	(EOQ) and numeric examples. ABC, HML, VED, XYZ and other modern methods of analysis. Various types of inventory models such as Wilson's inventory model, Replenishment model and two bin model. (Only sketch and understanding, no derivation.).Concepts of Material Requirement Planning (MRP) and Enterprise Resource Planning (ERP).	

Cours	Course Outcomes:				
After o	After completion of the course, students will be able to:				
1	Acquire fundamental knowledge of Industrial and Operations Management.				
2	Understand and learn about production system and management techniques.				
3	Prepare Production and Project Planning by CPM and PERT techniques.				
4	Learn Material Management systems and Inventory Management Models.				
5	Understand Production Planning and Control System and various Job sequencing				
	techniques.				

Learn	Learning Resources:				
1	O. P. KHANNA – "Industrial Engineering & Management" By Khanna Publishers.				
2	A. P. Verma - "Industrial Engineering & Management"- KATARIA and SONS.				
3	L.C.JHAMB – "Industrial Management- II) – Everest Publishing House.				
4	M. MAHAJAN – "Industrial Engineering and Production Management" Publisher				
	: Dhanpat Rai, New Delhi				
5	L.S. Srinath– "CPM & PERT principles and Applications				

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Name:	Analog and Digital Electronics Lab				
Course Code:	ES-EC 393	Category:	Engineering Science Course		
Semester:	Third Credit: 1.5				
L-T-P:	0-0-3	Pre-Requisites:	Basic Knowledge of Electronics		
Full Marks:	II Marks: 100				
Examination	Semester Examination:	Continuous Assessment:	Attendance:		
Scheme:	60	35	05		

Course Objectives:								
1	Apply the concepts of electronics to carry out experiments on Analog & Digital							
1	Electronics to understand the aspects of cost effective design solutions.							

Course Contents:					
Module No.	Description of Topic/ Experiment				
1	Realization of Basic gates gate using universal gates.	3P			
2	Construction of Half Adder & Full Adder Circuit using Logic Gates. Verify its output.	3P			
3	Constructions of simple Decoder & Multiplexer circuits using logic gates verify its output.	3P			
4	Realization of RS / JK / D flip flops using logic gates.	3P			
5	Realization of Synchronous Up/ Down Counter.	3P			
6	Realization of MOD N Counter.	3P			
7	Design a BCD to Seven Segment Decoder.	3P			
8	Design a Binary to Gray Code Converter.	3P			
9	Study of timer circuit using NE555 and configuration of Mono-stable and A stable Multi-vibrator.	3P			
10	Construction of 2-stage R-C coupled transistor amplifiers & study of its gain and bandwidth.	3P			
11	Study of Any Oscillator.	3P			
12	Study of class A Power Amplifier.	3P			
Total		36P			

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Outcomes:			
After completion of the course, students will be able to:			
1	Apply the practical knowledge of basic electronics simple Circuit.		
2	Implement & design combinational circuit.		
3	Implement & design sequential circuit.		

Learning Resources: 1 Introduction to Analog & Digital Circuits Lab Manual by Brian Dean, Kendall Hunt Pub Co. 2 Analog And Digital Electronics, by Charles H. Roth, Jr., Larry L. Kinney | Raghunandan G. H. 3 Hands on Electronics by Kalpan Daniel M Cambridge University Press

Course Name:	Data Structure & Algorithms Lab						
Course Code:	PC-IT391	Category:		Profess	essional Core Courses		
Semester:	Third	Cr	edit:	2			
L-T-P:	0-0-4	Pre-Requisites:		ES-CS201(Programming for			
L-I-F. 0-0-4		rre-kequisites:		Problem Solving)			
Full Marks:	100						
Examination	Semester Examinatio	mination: Continuous		Attendance: 05			
Scheme:	60		Assessment: 35		Autonualice. 05		

Course Objectives:					
1	To develop skills to design and analyze simple linear and nonlinear data structures				
2	To strengthen the ability to identify and apply the suitable data structure for the given				
	real world problem				
3	To gain knowledge in practical applications of data structures				

Course Contents:					
Module No.	Description of Topic/ Experiment				
The contents should include about 10 assignments with the focus given as outlined below:					
1	Lab 1: Implementation of array operations				
2	Lab 2: Stacks and Queues: adding & deleting elements Lab 3: Circular Queue: Adding & deleting elements	8P			

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*11 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

3	Lab 4: Evaluation of expressions operations on Multiple Stacks &Queue	4P
4	Lab 5: Implementation of linked lists: inserting, deleting, and inverting a linked list	8P
	Lab 6: Implementation of stacks & queues using linked lists	01
	Lab 7: Hash tables implementation: searching, inserting and deleting	
5	Lab 8: Searching techniques	12P
	Lab 9: Sorting techniques	
	Lab 10 : Recursive traversal of Trees	
6	Lab 11: AVL tree implementation	12P
0	Lab 12: Graphs and its traversal algorithms: Breadth First Search (BFS) &	121
	Depth First Search (DFS)	
Total		48P

Cour	Course Outcomes:	
After	After completion of the course, students will be able to:	
1	Design and analyze the time and space efficiency of the data structure.	
2	Identity and analyze the appropriate data structure for given problem.	
3	Have practical knowledge on the application of data structures.	

Lear	Learning Resources:		
1	"Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.		
2	"Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan		
	Anderson- freed.		
3	"Data Structures in C" by Aaron M. Tenenbaum.		
4	"Data Structures Using C" by Reema Thareja.		
5	"Data Structures through C" by Yashwant Kanitkar, BPB House		
6	"Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.		

Course Name:	Computer Organizatio	Computer Organization and Architecture Lab		
Course Code:	PC-IT392	Category:	Professional Core	
	1 C-11 372		Courses	
Semester:	Third Credit: 2		2	
L-T-P:	0-0-4	Pre-Requisites:	Concepts of Basic	
	0-0-4		Electronics	
Full Marks:100				
Examination	amination Semester Examination: Continuous Assessment: Attendance:		Attendance:	
Scheme:	60	35	05	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*12 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course	Course Objectives:	
1	Design Adder/Subtractor composite unit.	
2	Design a BCD adder.	
3	Design a composite ALU.	
4	Design of a 'Carry-Look-Ahead' Adder circuit	
5	Cascade two RAM ICs	

Course C	Course Contents:	
Module No.	Description of Topic	Contact Hrs.
	Familiarity with IC-chips, e.g.	12P
1	a) Multiplexer, b) Decoder, c) Encoder b) Comparator	
	Truth Table verification and clarification from Data-book.	
2	Design an Adder/Subtractor composite unit.	4P
3	Design a BCD adder.	4P
4	Design of a 'Carry-Look-Ahead' Adder circuit.	4P
5	Use a multiplexer unit to design a composite ALU.	4P
6	Use ALU chip for multi bit arithmetic operation	8P
7	Implement read write operation using RAM IC.	4P
8	Cascade two RAM ICs for vertical expansion.	4P
9	Cascade two RAM ICs for horizontal expansion.	4P
	Total	48P

Course Outcomes:		
The student will be able to :		
Design, implement, and debug digital hardware systems.		
Understand digital logic specification methods and the compilation process that transforms these into logic networks.		
Understand the design of the various functional units of digital computers		
1		

Learning Resources:		
1	W. Stallings, "Computer Organization and Architecture - Designing for Performance",	
	Prentice Hall of India	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*13 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Course Name:	IT Workshop (Sci. Lab/MATLAB/Python/R)			
Course Code:	PC-IT393	Category: Professional Core		
Semester:	Third	Credit:	2	
L-T-P:	0-0-4	Knowledge of Programming Log Programming		
Full Marks:100				
Examination Scheme:	Semester Examination: 60	Continuous Assessment: 35	Attendance: 05	

Course Objectives:		
1	Understand about the details of Scripting languages.	
2	Make students learn to use SciLab, MATLAB, R and Python and its libraries to	
	provide the solutions for the real life problems.	

Course C	Course Contents:		
Module No.	Description of Topic	Contact Hrs.	
1	Lab1: Familiarization with SciLab, MATLAB, R and Python environment with simple problems Lab 2: Simple computational problems using different operators, expressions.	8P	
2	Lab 3: Problems involving using Conditional Statements (if-else, nested if-else) Lab 4: Iterative problems using while, do-while, for loops Lab 5: Problems to be solved using switch-case and nested loop.		
3	Lab 6 & 7: Concepts of Lists/Array/Vectors and problems using 1-D and 2-D array	8P	
4	Lab 8: Concepts of Tuple and Dictionaries with suitable problems Lab 9: Problems on String manipulation Lab 10: Problems to be solved using functions and modules	12P	
5	Lab 11: Concepts of Data Manipulation and related problems. Lab 12: Problems involving File handling operations and plotting of data.	8P	
Total		48P	

*Curriculum for Undergraduate Degree (B.Tech.) in Artificial Intelligence and Machine Learning (w.e.f. AY: 2021-22)*14 | P a g e

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in/

Cours	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	Understand the details of Scripting languages		
2	Design real life problems and think creatively about solutions		
3	3 Develop Solutions for advanced applications using R/Matlab/Python		

Learning Resources:	
1	Python Programming: Using Problem Solving Approach" by Reema Thareja
2	Data Structure and Algorithmic Thinking with Python" by Narasimha Karumanchi
3	Michael J. Crawley. Statistics: An Introduction using R. Wiley, 2nd edition, 2014. ISBN
	978-1-118-94109-6.
4	Sarah Stowell. Using R for Statistics. Apress, 2014. ISBN 978-1484201404
5	http://www.mathworks.com/help/releases/R2014b/pdf_doc/matlab/getstart.pdf
6	https://www.scilab.org/sites/default/files/Scilab_beginners.pdf